КВАНТОВО-ХИМИЧЕСКИЙ РАСЧЕТ СТРУКТУРЫ, ЧАСТОТ КОЛЕБАНИЙ, СВОЙСТВ ТРИМЕТОПРИМА И ЕГО ИОНИЗИРОВАННЫХ ФОРМ

Генык Е.А., Бирюкова М.М., Золотарева Н.В.

ФГБОУ ВО «Астраханский государственный университет», Инновационный естественный институт, Россия, 414000, Астрахань, пл. Шаумяна, 1 тел: 8(8512)52-49-95, факс:8(8512)51-82-64, e-mail: zoloto.chem@mail.ru

Триметоприм (2,4-диамино-5-(3,4,5-триметоксибензил)-пиримидин) входит в состав лекарственного препарата «Бисептол» и усиливает антибактериальные свойства сульфаметоксазола. Известно, что биохимическая активность препарата в значительной степени определяется наличием радикала при сульфонамидной группе -SO₂NH- в структуре сульфаметоксазола [1]. Однако, для понимания реакционной способности в процессах нуклеофильного замещения, а также участие в качестве конкурентных антагонистов в отношении ряда ферментных систем важно учитывать реакционную способность и биохимическую активность триметоприма.

Была проведена оптимизация геометрии триметоприма и ионизированных форм, вычислены заряды атомов, проанализированы конфигурации молекулярных орбиталей, с целью локализации реакционных центров. Квантово-химические расчеты выполнены в рамках теории функционала плотности B3LYP/6-311G** в программе Gamess [2].

В процессе вычислительного эксперимента были установлены локальные минимумы, соответствующие возможным конформациям триметоприма ($E_{\text{общ}}$ =-982,58 а.е., величина энергетического расщепления 11,864 эВ). Наиболее вероятными центрами нуклеофильной атаки являются 1 N, 5 N (-0,95 а.е. заряда), менее выражены свойства у атомов 16 O, 18 O (-0,77 а.е.), 3 N (-0,67 а.е).

Электрофильными центрами являются 5 С, 4 С (0,73 a.e.) и менее 22 Н (0,39 a.e.), 19 Н (0,21 а.е.). Некоторые вычисленные частоты колебаний: $v_s(\text{NH}_2)$ в диапазоне 3487 см ${}^{-1}$ –3500 см ${}^{-1}$; $v_{as}(\text{NH}_2)$ в диапазоне 3610 см ${}^{-1}$ –3630 см ${}^{-1}$; v(NH) = 3043 см ${}^{-1}$. Имитируя воздействие электрофильного реагента, исследовали протонированную форму триметоприма ($E_{oбщ}$ =-983,15 а.е., величина энергетического расщепления 7,736 эВ). В случае нуклеофильного реагента исследовали гидроксилированную форму ($E_{oбщ}$ =-982,37 а.е., величина энергетического расщепления 9,608 эВ). В результате, наиболее оптимальным и энергетически выигрышным является электрофильность протонированной формы триметоприма.

Литература.

- 1. Γ иричева H.И. и ∂p . Изменение структуры молекул замещенных ароматических сульфонамидов при переходе «кристалл газ» // Квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул. Иваново: Γ ИГХТУ, **2009**. С. 31 36.
- 2. Электронный ресурс программы Gamess-US: http://www.msg.ameslab.gov/gamess/.