О ГРАНИЦЕ УПРУГОПЛАСТИЧЕСКИХ ТЕЛ МИНИМАЛЬНОГО ОБЪЕМА

Найштут Ю.С.

Самарский государственный технический университет, Архитектурно-строительный институт, Россия, 443001, г. Самара, ул. Молодогвардейская, 194 Тел.: (846) 336-87-78, e-mail: neustadt99@mail.ru

Изучается оптимального проектирования задача трехмерных конструкций [1, 2]. Пусть поверхность S ограничивает односвязный объем V_0 и состоит из двух частей $S = S_{10} + S_{20}$. Часть S_{10} неподвижна, на S_{20} заданы V_0 (контура Внутри области S) располагаются напряжения p. замкнутые поверхности S_i , i = 1, 2 ... mс объемами непересекающиеся

 $V = V_0 - \sum_i^m V_i$, который полагаем идеальным упругопластическим Рассмотрим объем телом. Известен коэффициент предельной нагрузки для тела V $k = \min_v \int D(v) dV / \int pv dV$

$$k = \min \int D(v) dV / \int pv dV$$

Интегрирование производится по объему V, минимум вычисляется кинематически допустимым полям v, а D(v) - диссипативный потенциал. Ставится задача определить наибольшее число m при заданном значении k так, чтобы объем V был

 $\sum_{i=1}^{m} S_{i}$. Объемы минимален вместе с суммарной поверхностью полостей удовлетворяют условию $V_i > k_1$ с малой константой k_1 .

Доказывается следующий результат: если число k, найденное для тела V_0 , достаточно велико, а k_1 мало, то поверхности S_i существуют только тогда, когда главные деформации кинематически возможных полей $\varepsilon_1, \varepsilon_2, \varepsilon_3$, на которых достигается минимум предельной нагрузки, одного знака. Вопрос о количестве поверхностей S_i остается открытым.

Литература.

- 1. Прагер В. Основы теории оптимального проектирования конструкций Изд-во "Мир". М. 1977. 109 с.
 - 2. Баничук Н. В Введение в оптимизацию конструкций. Наука. М., 1986. 302 с.