УВЕЛИЧЕНИЕ ЭФФЕКТИВНОСТИ НЬЮТОНОВСКИХ МЕТОДОВ С КОНЕЧНО-РАЗНОСТНОЙ АППРОКСИМАЦИЕЙ

Свириденко А.Б., Зеленков Γ .А. 1

ФГБОУ ВПО «Кубанский государственный университет» филиал в г. Новороссийске Россия, 353922, г. Новороссийск, ул. Коммунистическая 36 Тел.: (908)6818286 E-mail: puma_home@mail.ru
¹ФГБОУ ВПО «Морской государственный университет им. адм. Ф.Ф. Ушакова» Россия, 353922, г. Новороссийск, пр. Ленина 93

Рассмотрен подход к увеличению точности решения задач безусловной оптимизации ньютоновскими методами с конечно-разностной аппроксимацией первых и вторых производных, основанных на факторизации Холесского. И по функции, и по аргументам. Проведено экспериментальное сравнение эффективности алгоритмов.

Пусть h^k , H^k – соответственно градиент, и гессиан, вычисленные на итерации k в точке x^k процесса безусловной минимизации гладкой функции F(x), тогда для получения быстросходящегося алгоритма не обязательно пользоваться точными значениями производных, его можно построить и на основе их конечно-разностной аппроксимации. Когда вычисление аналитических значений первых и вторых производных минимизируемой функции F(x) затруднено или просто невозможно такой подход оказывается самым подходящим. Достоинства дискретных ньютоновских методов те же, что и у обычных методов ньютоновского тапа: высокая скорость сходимости и способность «ощущать» приближение седловой точки и уходить от нее. В таблице 1 представлена часть результатов сравнения по двум задачам: Вуда и Степенная [1]; указаны методы: МпbApp — метод ньютона безусловной оптимизации с аппроксимацией первых и вторых производных [1], а M1_MnbApp и M2_MnbApp — разработанные модификации. Здесь k - число итераций, δx — точность решения по аргументам, δF — точность решения по функции, k_0 — число вычислений функции.

Таблица 1. Сравнение аналогов

Метод	Задача	k	δF	δx	k_0
MnbApp	Вуда	20	1.7·10 ⁻²⁶	4·10 ⁻¹⁴	711
M1_MnbApp	Вуда	23	0	0	730
M2_MnbApp	Вуда	29	0	0	915
MnbApp	Степенная	166	$3.6 \cdot 10^{-49}$	$3,5\cdot10^{-8}$	1024
M1_MnbApp	Степенная	69	0	0	959
M2_MnbApp	Степенная	38	0	0	547

Литература.

1. Зеленков Г.А., Хакимова А.Б. Подход к разработке алгоритмов ньютоновских методов безусловной оптимизации, программная реализация и сравнение эффективности. // Журнал "Компьютерные исследования и моделирование", №3, Т.5, 2013, с. 367-377